
The Selection of Programming Language to
reduce Defect and increase Quality

Ashwin Tomar, V. M. Thakare

Abstract— There are many different programming languages used for development of various applications. The defects are associated
with programming languages. The selection of programming languages depends on user's goal. So variable like defects, STAGES, types
of languages and their behavior is studied to find relationship between them. Every language has advantages and disadvantages. It was
found that the programming languages are associated with number of defects and hence quality and productivity.

Index Terms— DRE – Defect removal efficiency, DP – defect potential, PL – Programming languages

—————————— ——————————

1 INTRODUCTION

HE act of simulating something first requires that a model be

developed; this model represents the key behaviors/ func-

tions or characteristics of the selected physical or abstract

system or process. The model represents the system itself, whe-

reas the simulation represents the operation of the system There

are many programming languages for developing software. Every

language has advantages and disadvantages. Selection of pro-

gramming languages is associated with error or defect number

and hence with quality and productivity of software. In earlier

classes we studied that languages are classified as Lower level

languages like machine languages (uses 0 & 1), and assembly

languages (uses instruction as ADD for addition), Middle level

language (procedural languages) i.e C and others (Code converts

to machine code to run on different machines) and High level

languages which includes scripting languages, object oriented

languages, (Java, C #, Dot Net) [1].

A software defect is an error, flaw, bug, mistake, failure, or fault

in a computer program or system that may generate an inaccurate

or unexpected outcome, or precludes the software from behaving

as intended [2]. It is nothing but a variance from the given speci-

fication, a hidden or coding error. Defects are undesirable, they

cause increase in risk, revenue loss to the customer if they remain

in the final product. Bad fixes are errors which are not detected

and not removed at any stage. So they passed to delivery stage. In

this paper an attempt is being made to study the relationship be-

tween variable and their behavior. The paper goes in following

sequence as introduction, methodology, data collection, result,

conclusion and references.

2 SURVEY

G.Phipps et.al[3] while comparing program of C++ and java
experienced that C++ program contained 2-3 times more de-
fects than a Java program, C++ generated 15-30% more defects

per line, and Java was 30-200% more productive in lines of
code produced over time.

D.K.Verma et.al [4] showed how the design of the language,
the form of its specification, and the quality of the
Implementation, all have a significant effect on software quali-
ty. All these three are the major issues of programming
Languages that affects the quality of the software product.
Programming languages play an important role in quality of a
software product. So it is essential to choose the right pro-
gramming language for a particular domain to achieve the
quality of software product.

P.Bhattacharya et.al. [5] Showed that applications that start
with C as the primary language are shifting their code base to
C++, and that C++ code is less complex, less prone to errors
and requires less effort to maintain.

D.Renu et.al [6] classified the causes of software errors/defects
related to requirement, client developer's communication fail-
ures deliberate deviation from software requirement, logical
design errors, coding errors, non compliance with documents
and coding instruction, short coming of testing process, pro-
cedure errors, document errors.

3 METHODOLGY

In this paper the relationship between variables and their
behavior is studied. It is seen that one variable influences or
impacts other variable. The variables are classified into inde-
pendent and dependent variables. Table 1 represents the vari-
ous STAGES like Requirement, Design, Coding, and Docu-
ment.

Independent

Variable

Description

STAGE
Variable represents stage like requirement, design,

coding, documents

Programming

Language

PL-Variable represents type of language used C,

C++, VB

T

————————————————

 Ashwin Tomar is working in computer science, MCA Department, Pune
University,Pune, Siddhant Institute of Computer Application, India. Email:
mcatomarashwin@gmail.com

 V. M. Thakare is working in P. G. Department of CSE, Amravati University,
Amravati, India. Email: Vilthakare@gmail.com.

TABLE 1
OPEN SOURCE AND COMMERCIAL TOOLS

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 148

IJSER © 2016
http://www.ijser.org

IJSER

Data Collection - A good data file from
www.namcookanalytics.com reported by Dr Caper Jones was
taken as basis. It had 61 cases (0 to 60) of Software Risk Mas-
ter™ Quality with details on Stage (requirement, design,
code, document, bad fixes). Various operations were done on
this file to find the behavior of variables and their relationship.
So the variable was classified into Independent variable like
Language/ Tool and dependent variables like Defects (d). The
Table 2.1, 2.2, 2.3 shows relation between various STAGES
(like Requirement, Document, Design, Code, and Bad fixes),
languages /tools and number of defects.

STAGE ADA ASM C C# C++

Bad

fixes 267.48 614.77 253.570 225.23 125.97

Code 965.31 4881.14 1082.82 670.93 421.02

Design 1267.38 1418.83 1098.41 1216.84 716.92

Docu-

ment 600.73 671.22 499.49 554.64 330.09

Require

ment

993.12 1075.67 861.18 614.21

Java Java_MySQL Java_PHP MASM NSP PL1

177.75 166.17 256.92 419.95 20.93 299.20

551.45 550.15 868.68 2354.16 46.33 1202.82

922.06 950.26 1248.83 1418.83 350.30 1316.59

416.94 443.14 591.82 669.28 156.06 589.65

750.15 602.09 1038.75 1070.42 301.04 908.72

Ruby Smalltalk
SQL_Co

bol

SQL_P

HP

SQL_P

L1

Visual

Basic

29.24 27.89 231.29 162.56 184.71 206.95

71.13 97.35 404.79 433.19 400.74 507.43

175.81 156.61 1331.50 1038.84 1228.99 1204.54

79.39 71.32 591.50 463.58 548.26 537.71

137.83 134.59 1023.84 593.61 709.45 983.29

4 RESULT

The graph shows that there are maximum error during
ASM ie Assembly languages, MASM, PL1 Programing lan-
guages), The lowest error are in RUBY, SMALL TALK. The
various reasons explained for these are mostly likely as below:

a) ASM – Assembly computer language – has syntax has

defect that makes coding prone to error.

b) MASM – Microsoft Assembler - MASM syntax has some
 Significant defects that makes coding prone to error. Many
 of these Statement must be on a single line, max 128 chars

c) PL1 - Programming language 1 is a procedural, imperative
computer programming language designed for scientific,
engineering, business and systems programming applica-
tion. It has been used by various academic, commercial and
industrial organizations since it was introduced in the
1960s, and continues to be actively used.PL/I's principal
domains are data processing, numerical computation,
scientific computing, and systems programming; it sup-
ports recursion, structuredprogramming, linked data struc-
ture handling, fixed-point, floating-point, complex, charac-
ter string handling and bitstring handling.

d) Ruby - Ruby is a dynamic, reflective, object-oriented, gen-
eral-purpose programming language. It was designed and
developed in the mid-1990s by Yukihiro "Matz" Matsumoto
in Japan. According to its authors, Ruby was influenced by
Perl, Smalltalk, Eiffel, Ada, and Lisp. Not as fast as Java
dynamic type languages (like Python, Ruby) is less error
prone.

e) Small Talk – object-oriented languages

TABLE 3
FINDING RELATIONSHIP BETWEEN DEFECT AND LANGUAGES

 CONTINUED FROM ABOVE TABLE 1

TABLE 2
AVERAGE DEFECT AT VARIOUS STAGES VS LANGUAGES

 CONTINUED FROM ABOVE TABLE 1

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 149

IJSER © 2016
http://www.ijser.org

IJSER

f) C - is hard to beat,

g) Java – is verbose (i.e. it takes more code to get something

 done) reliable and expensive.

Functional and scripting languages tend to provide the

most concise code, whereas procedural and object-oriented
languages are significantly more verbose.

5 CONCLUSION

The object oriented languages like java, C# are less prone to
error or defect as compared to other languages like lower level
languages and middle level languages due robust, verbose
nature of them. They have stricter rules to help prevent pro-
gramming mistakes.

REFERENCES

[1] B.Kahanwal, " Abstraction level taxonomy of Programming languages

framework ", IJPLA, Vol.3, No.4, Oct 2013.

[2] M. S. Rawat, S. K. Dubey, "Software Defect Prediction Models for Quality

Improvement: A Literature Study,‖ IJCSI, vol. 9, no. 5, pp. 288–296, 2012.

[3] G.Phipps, Comparing observed bug and productivity rates for Java and

C++, Software Practice & Experience, Vol 29 Issue 4, Pages 345-358, April 10,

1999.

[4] D. K.Verma, H. S. Shukla, ―Importance and Role of Programming Languages

in Software Quality Improvement,‖ JARCSSE, vol. 5, no. 11, pp. 205–209,

2015.

[5] P.Bhattacharya, I.Neamtiu"Assessing Programming Language Impact on

Development and Maintenance: A Study on C and C++", ICSE ’11, May 21–

28, 2011.

[6] D. Renu, E. Ritika, ―A Proposed Defect Tracking System for Classifying the

Causes of Software Errors,‖ IJARCSSE, vol. 5, no. 5, pp. 1150–1154, 2015.

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 150

IJSER © 2016
http://www.ijser.org

IJSER

